首頁
問答
百科
新聞首頁
百科
辛欽
05-22
辛欽本詞條是多義詞,共2個義項蘇聯數學家代表作《數學分析簡明教程》獲列寧勛章亞歷山大·雅科夫列維奇·辛欽(Aleksandr Yakovlevich Khinchin,1894-1959)蘇聯數學家和數學教育家,現代概率論的奠基者之一。辛欽1894年7月19日生于莫斯科康德羅沃,1959年11月18日逝世于莫斯科。1916年畢業(yè)于莫斯科大學,先后在莫斯科大學和蘇聯科學院斯捷克洛夫數學研究所等處工作
三聯體
05-22
三聯體本詞條是多義詞,共2個義項生理學名詞生理學上的三聯體主要見于骨骼肌纖維內,由一條橫小管及其兩側相鄰的肌漿網終池組成,橫小管膜與肌漿網膜緊密相貼形成三聯體結構。工程機械上的三聯體即過濾器、調壓器和油霧器三者串聯所形成的管件設備,也是油水分離器一種。
密碼子
05-22
密碼子三聯體密碼密碼子(codon)是指信使RNA分子中每相鄰的三個核苷酸編成一組,在蛋白質合成時,代表某一種氨基酸的規(guī)律。信使RNA在細胞中能決定蛋白質分子中的氨基酸種類和排列次序。信使RNA分子中的四種核苷酸(堿基)的序列能決定蛋白質分子中的20種氨基酸的序列。而在信使RNA分子上的三個堿基能決定一個氨基酸。
勒貝格測度
05-22
勒貝格測度1902年勒貝格提出的標準方法勒貝格測度是賦予歐幾里得空間的子集一個長度、面積、或者體積的標準方法。它廣泛應用于實分析,特別是用于定義勒貝格積分??梢再x予一個體積的集合被稱為勒貝格可測;勒貝格可測集A的體積或者說測度記作λ(A)。一個值為∞的勒貝格測度是可能的,但是即使如此,在假設選擇公理成立時,R的所有子集也不都是勒貝格可測的。不可測集的“奇特”行為導致了巴拿赫-塔斯基悖論這樣的命題,
反密碼子
05-22
反密碼子位于tRNA反密碼環(huán)中部的堿基反密碼子是位于tRNA反密碼環(huán)中部、可與mRNA中的三聯體密碼子形成堿基配對的三個相鄰堿基。在蛋白質的合成中,起解讀密碼、將特異的氨基酸引入合成位點的作用。反密碼子(anticodon):RNA鏈經過折疊,看上去像三葉草的葉形,其一端是攜帶氨基酸的部位,另一端有3個堿基。每個tRNA(transfer RNA)的這3個堿基可以與mRNA上的密碼子互補配對,因而
增函數
05-22
增函數專業(yè)術語專業(yè)術語,拼音為zēng hán shù,設函數f(x)的定義域為D,如果對于定義域D內的某個區(qū)間上的任意兩個自變量的值x1, x2,當x1
無規(guī)卷曲
05-22
無規(guī)卷曲本詞條是多義詞,共2個義項肽鏈中,具有重要的生物學功用,但相對沒有規(guī)律性的排布的環(huán)或者卷曲結構,稱為無規(guī)卷曲(Random coil)。無規(guī)卷曲是除α-螺旋、β-折疊、β-轉角之外的蛋白質常見的二級結構。
連分數
05-22
連分數數學中的概念連分數叫做有限連分數?;拘畔⑼馕拿鹀ontinuedfraction學科數學分類2無限連分數分類1有限連分數正文繁分數叫做有限連分數。常簡記為。當是整數、是正整數時,則叫做有限簡單連分數,當n無限時,稱為無限簡單連分數。通常連分數均指簡單連
伴侶蛋白
05-22
伴侶蛋白伴侶蛋白,是一種與新合成的多肽鏈形成復合物,并協(xié)助它正確折疊成具有生物功能構向的蛋白質。
約瑟夫·劉維爾
05-22
約瑟夫·劉維爾法國數學家“劉維爾數”創(chuàng)始人約瑟夫·劉維爾(Joseph Liouville,1809年3月24日-1882年9月8日) 法國數學家,男,一生從事數學、力學和天文學的研究,涉足廣泛,成果豐富,尤其對雙周期橢圓函數、微分方程邊值問題和數論中的超越數問題有深入研究。劉維爾研究了后來所稱的“劉維爾數”,并證明了其超越性,是第一個證實超越數存在的人。他在數學研究中有很重要的學術貢獻。
蛋白質折疊
05-22
蛋白質折疊蛋白質折疊密碼又稱第二遺傳密碼,即指氨基酸順序與蛋白質三維結構之間存在的對應關系。
卡爾·西格爾
05-22
卡爾·西格爾卡爾·西格爾,德國數論家。他的研究范疇是數論、不定方程和天體力學。1978年,獲沃爾夫數學獎。
信號肽
05-22
信號肽是引導新合成的蛋白質向分泌通路轉移的短(長度5-30個氨基酸)肽鏈。常指新合成多肽鏈中用于指導蛋白質的跨膜轉移(定位)的N-末端的氨基酸序列(有時不一定在N端)。在起始密碼子后,有一段編碼疏水性氨基酸序列的RNA區(qū)域,該氨基酸序列就被稱為信號肽序列,它負責把蛋白質引導到細胞含不同膜結構的亞細胞器內。
高爾基體
05-22
高爾基體卡米洛·高爾基發(fā)現的細胞體高爾基體是由單位膜構成的扁平囊疊加在一起所組成。扁平囊為圓形,邊緣膨大且具穿孔。一個細胞內的全部高爾基體,總稱為高爾基器。一個高爾基體常具5——8個囊,囊內有液狀內含物。高爾基體(Golgi apparatus,Golgi complex)亦稱高爾基復合體、高爾基器。是真核細胞中內膜系統(tǒng)的組成之一。為意大利細胞學家卡米洛·高爾基于1898年首次用硝酸銀染色的方法在
戴森
05-22
戴森本詞條是多義詞,共3個義項普林斯頓高等研究物理學教授出生于英國,1947年至美國康乃爾大學研究,1951年正式定居美國,1953年成為普林斯頓高等研究物理學教授至今。
超越數論
05-22
超越數論超越數論是以超越數為研究對象的數論分支之一?;拘畔⑼馕拿鸅eyondnumbertheory分類代數數超越數學科數論證明者法國數學家劉維爾研究方向數的超越性正文以超越數為研究對象的數論分支之一。全體復數可分為兩大類:代數數和超越數。如一個復數是某個系
核糖體
05-22
核糖體細胞中的一種細胞器核糖體(Ribosome),舊稱“核糖核蛋白體”或“核蛋白體”,普遍被認為是細胞中的一種細胞器,除哺乳動物成熟的紅細胞,植物篩管細胞外,細胞中都有核糖體存在。一般而言,原核細胞只有一種核糖體,而真核細胞具有兩種核糖體(其中線粒體中的核糖體與細胞質核糖體不相同)。核糖體的結構和其它細胞器有顯著差異:沒有膜包被、由兩個亞基組成、因為功能需要可以附著至內質網或游離于細胞質。因此,
堆疊素數論
05-22
堆疊素數論華羅庚所著的數論著作《堆壘素數論》是1940年(民國二十九年),國立西南聯合大學的教授華羅庚在一個吊腳樓上,用八個月完成了第一部數學專著。本書成書于1940-1941年(一說1939-1941年)間,最初投交蘇聯科學院發(fā)表。但由于1941-1945的戰(zhàn)爭條件,延至1947年在蘇聯以俄文出版,后來于1953由中國科學院出版中文版。1957年中文版經修訂后再版。
非負整數集
05-22
非負整數集全體自然數的集合非負整數集是一種特定的集合,指全體自然數的集合,常用符號N表示。非負整數包括正整數和零。非負整數集是一個可列集。
起始因子
05-22
起始因子起始因子(英語:Initiation factors)是指翻譯起始階段端結合到核糖體小亞基上的一些蛋白質,翻譯是蛋白質生物合成中的一部分。
遞推公式
05-22
遞推公式數學術語之一如果數列an的第n項與它前一項或幾項的關系可以用一個式子來表示,那么這個公式叫做這個數列的遞推公式。
起始復合物
05-22
起始復合物in itiation 由一個mRNA、一個接合子mRNA的特定位點(RBS;核糖體結合位點)的30s核糖體亞基和一個與起始密碼子相互作用的N-甲酰甲硫氨酸t(yī)RNA相結合而成。
柯西
05-22
柯西法國數學家、物理學家代表作《代數分析教程》柯西1789年8月2l日出生生于巴黎,柯西是一位多產的數學家,他的全集從1882年開始出版到1974年才出齊最后一卷,總計28卷。著作有《代數分析教程》、《無窮小分析教程概要》和《微積分在幾何中應用教程》。這些工作為微積分奠定了基礎,促進了數學的發(fā)展,成為數學教程的典范。
大亞基
05-22
大亞基核糖體上結合tRNA的亞基核糖體大亞基是核糖體中較大的核糖體亞基。大亞基略呈圓錐形,底面伸出三個突起,形成一個凹陷,大亞基中心有一中央管道。大亞基含三種rRNA和50多種蛋白質。
肽基轉移酶
05-22
肽基轉移酶催化氨基酸間肽鏈形成的核酶在mRNA翻譯為肽鏈的時候,肽鍵的形成是自動發(fā)生的,不需要額外的能量,這一反應是由肽基轉移酶催化的。
?上一頁
274
275
276
277
278
279
280
281
282
283
下一頁?
279/39767頁